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Ab initio pair potentials for FCC metals: an application of the 
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Ablrael  We use the method of MZlbius transformation introduced by Chen to obtain pair 
potentials for FCC metals from firstprinciples total energy calculations. The derivation is 
exact tor radial potentials and it converges much fdsler than the earlier reponed method 
of Carlsson-Gelatl-Ehrenreich. We have tested this formulation tor Cu using the tight 
binding representation of the linear muffin-tin orbital method. Our results agree with 
lhase obtained by Carlsson and co-workers and qualitatively with the other Morse-type 
pair potentials derived from effective medium theories. 

1. Introduction 

Of the various approaches which describe the interatomic interactions in condensed 
matter, one of the physically more appealing is the idea ofpuirpofenrialr. Formally, 
the pair potential @ ( R )  may be defined from the cohesive energy per atom Etch by 
the relation 

For most applications the pair potential is considered to be spherically symmet- 
ric and in various situations either the Lennard-Jones form is extensively used (see 
Abraham (1984) and the references therein) as in Van der Waals solids, or various 
generalisations of the Morse-type potentials are used for metals (Johnson (1988) and 
the references therein). 

In general there is no reason whatsoever for assuming that the cohesive energy 
can be written in the form (1). Certainly we cannot prove that it can be so. In fact, 
there are attempts now to include three and many-body potentials in the cohesive en- 
ergy expression (see articles in Vitek and Srolovity (1989) and Nieminen er ul (1990)). 
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However, if we wish to think of cohesion in solids in terms of chemical bonding be- 
tween the pair of atoms constituting it, the ansarz is an appealing one. The simplicity 
of pair potentials has made it possible to study the mechanical and defect properties 
of metals on one hand, while for the description of the phase diagram of binary al- 
loys, this amafz reduces the statistical mechanical problem to one closely resembling 
the para- to antiferromagnetic phase transition problem. The pair potentials then 
relate to the pair interaction between magnetic moments. In recent years efforts 
have been made to obtain pair interaction energies from ab iniiio calculations (see 
Ferreira el a1 (1991) and references therein). However, in general such interaction 
cnergies are calcula red considering only the nearest-neighbour interactions. One of 
the earlier successful attempts to obtain the pair potentials from first-principles band 
structure total energy calculations was carried out by Carlsson er a1 (1980). However, 
the convergence of the pair potential for their method is quite slow. Recently Chen 
(1990) and Chen and Ren (1991) have suggested a new method of inverting the cohe- 
sive energy to obtain pair potentials using the Mbbius transformation. The resulting 
equations converge much more rapidly than through t h e  procedure of Carlsson er al 
(1980). In this paper we apply this procedure to FCC metals and calculate an ab inilio 
pair potential for copper. For the calculation of the cohesive energies we have used 
the tight binding representation of the linear multin-tin orbital (TB.LMT0) method 
(Andersen and Jepsen (1984), Andersen er al (1985)). Our results agree in general 
with the ab initio potential obtained by Carlsson er a1 (1980) and qualitatively with the 
Morse-type potential obtained by Johnson (1989) using the embedded-atom method 
(Daw and Baskes (1983)). 

I n  section 2, we give a brief description of the inversion procedure of Carlsson er 
al (1980) and then present our method of pair potential calculation for FCC metals. 
Our results for copper are presented in section 3. 

2. Methodology 

Band structure calculations yield the total energy, EtOt(r-), as a function of the 
lattice constant P .  The cohesive energy is then Ecot,(r) = ELoL(r) - E,,,(oo). The 
interatomic separation IRi - Bjl may be written in terms of the lattice constant r 
as S,r  for the p th  shell of neighbours. Assuming spherical symmetry of the pair 
potentials, each term at a fixed value of SPr occurs with a given weight Wp in the 
sum in (1). These pairs of values { S,, I\’,} are specific to a given lattice and may 
be easily generated for different lattices. 

Thus we may write (1) as 

where the operator 92, is defined by 

%‘i,f(r) = W,f(S,r). 
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@ ( P )  = R-lE(T). (5)  
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The formal inversion is then (henceforth we drop the subscript coh for simplicity) 

Carlsson and co-workers define %-I  as 
m - 1  

so that using (4) we can write (5) as 

This series is a very slowly convergent one (since the cohesive energy terms de- 
crease slowly) and requires a large amount of computation effort to obtain reasonable 
convergence. We shall illustrate an alternative method, first suggested by one of us 
(Chen (1990)). The main generalisation involves the use of a renormalised operator 
8; instead of a, (as in (4)). Let us illustrate this on the face centred cubic lattice 
with lattice constant 'P. 

For the FCC lattice we can write (1) in the following way: 

Here, the first term comes from the points lying along the axes. The 6 different 
directions give a weight of (6/2)=3. The first expression of the second term arises 
from the points on the cube edges lying on the coordinate planes, while the second 
expression arises from the points on these planes that lie on the face centres. Each 
of these contributions has a weight of (12L2)=6. The first expression in the last term 
arises from the points on the cube edges away from the coordinate planes. Each 
carries its appropriate weight. Note, equation (8) is exact. 

We shall now group together the first term and the s = t expressions in the 
second term and rewrite this as 

m 

R;@(r) = C 6 [ @ ( s r ) / f i ) +  (1/2)@(sr)]. (9) 
SE1 

We rewrite the remaining portion of the right-hand side of (8) as 
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Let us now define an operator N such that 

N f ( r )  = (1/6) ~ ( - 1 / 2 ) m - ’ ~ ( n ) f ( 2 ” z n r ) .  
m=1*=1 

Then 

If we change the dummy variable in the first expression from m to m‘ = m - 1, 
then we note that, except for the term for m‘ = 0 ,  every other term exactly cancels 
with a corresponding term in the second expression. Thus we finally have 

We shall now use the inversion theorem of Mobius, an important theorem of 
number theory (Hardy and Wright (1979), Schroder (1986)). This states that 

if 
w 

F ( r )  = f ( n r )  
n=1 

then 

and vice versa. Here p( n )  is the Mobius function defined by 

i f n = l  
if n + P(9) 
otherwise 

Here n + P( 9) means that n is a product of q distinct prime numbers. 
We note immmediately that if in our definition of N we choose p ( n )  to be 

the Mobius function, then from the theorem of Mobius it immediately follows that 
N % ; @ ( T )  = @ ( T )  and so 

N = (%;)-I. 
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With this new choice of $?; we obtain an equation analogous to (7). However, 
by now we have already included within $?: most of the infinite set of dominant 
contributions. As such the series with this new choice converges much faster. Chen 
and Ren (1991) have illustrated this fast convergence on the square and hexagonal 
lattices. Compared to the procedure of Carlsson ef ai (1.980) the expression for NE(r)  
is itself a fast converging series. This is because the cohesive energy' converges to zero 
within several lattice constants and only a few terms of the infinite series suffice within 
required error limits. Also, due to (146), some of the terms either do not contribute 
or there is a cancellation. In our calculations, we have included all contributions 
arising up to T = 5.7re (where re is the equilibrium lattice constant) in the cohesive 
energy', and up to six terms in the series expansion for W-' which can now be rewitten 
as 

$?-I = [ I  + (?R;)-%]-1($?;)-1. (16) 

Tables 1 and 2 show respectively the weights and distances used for the calculations 
of N and S. 

Table 1. Scaling indices and weights for lhe FCC laltice defined in (2) for the calculalion 
of N in (11). 

SP 6WP SP 6 WP 

1.4142 1.00 2.0000 -0.5000 
2.8284 -0.75 4.0000 -0.3750 
4.2426 -1.00 5.6569 -0.1875 

Table 2. Scaling indices and weights for the FCC lattice defined in (2) for the calculation 
of 8 in (IO). 

SP WP SP LVP SP WP 

1.2247 12 3.4641 4 4.6904 12 
1.5811 12 3.5355 36 4.7434 60 
1.7321 4 3.6056 12 4.8477 48 
1.8708 24 3.6742 48 4.8990 12 
2.1213 12 3.7417 24 4.9498 48 
2.2361 12 3.8079 12 5.0000 12 
2.3452 12 3.9370 48 5.0498 24 
2.4495 
2.5495 
2.7386 
2.9155 
3.0000 
3.0822 
3.1623 
3,2404 
3.3166 
3.3912 

__ 

36 12 

24 24 

12 
36 
12 
24 
12 
24 

- 

4.0620 
4.1231 
4.1833 
4.2426 
4.3012 
43589 
4.4159 
4.4721 
4.5277 
4.5826 
4.6368 

48 
24 
24 
12 
60 
12 
24 
12 
24 
24 
60 - 

5.0990 
5.1478 
5.1962 
5.2440 
5.3385 
5.3852 
5.4314 
5.4772 
5.5227 
5.6125 

36 
36 
16 
72 
48 
36 
36 
24 
60 
72 

- 
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The calculation of the cohesive energy for copper has been done using the TB. 
LMTO method (Andersen el a1 (1985)). In this method a tight binding Hamiltonian is 
obtained from first principles. This involves first the calculation of a lattice structure 
dependent structure function SiL, jL, ,  where i and j denote the sites and L = lm 
label the angular momentum components. In the TB representation, this function 
is short-ranged (effectively non-zero up to the second nearest-neighbour on the FCC 
lattice). Secondly, it involves the determination of the potential parameters CiL and 
A i P  and overlap parameters qL and pI 'L,  Ci, and Aif determine respectively 
the center and the width and hybridization of the il band. The overlap parame- 
ters are determined in a single atomic sphere alone and involve only intra-atomic 
characteristics. The effective first-order Hamiltonian is then given by 

(17a) If(') = C + A('/2)SA(1/2) = E + h. 

Here h is the expansion coellicient matrix and E, is the energy around which the 
l th  orbital is expanded. To obtain better accuracy we have used for our calculations 
the secondorder Hamiltonian, which is given as 

If(') = If(') - hoh. (17b) 

Details ol this can be found in Andersen et a1 (1985). The potential parame- 
ters for copper were calculated for each r self-consistently. We have now used the 
recursion method (Haydock el al (1972)) to obtain directly the total one-electron 
energy of the system. This method, given the lattice structure and a reasonably 
short-ranged Hamiltonian, recursively obtains a set of coefiicients p k , L )  and a 
set of orthogonal polynomials { P k , L ( E ) ,  Qk,=(E)}  with which the density of states 
n( E) and any integral of the form f\ p( E')n( E')dE' are estimated. The method 
has been described in detail by Haydock (1980) and Kelly (1980) and is particularly 
suited for systems lacking translational periodicity and that are also interesting from 
the point of view of the applications of pair potentials. The recursion is carried out 
up to 8 steps for a cluster having 930 atoms, and the terminator, i.e. the correction 
due to the remaining terms is estimated using the multiband terminator scheme ol 
Nex (1978). The spherically symmetrized charge density is obtained from the local 
density of states as 

whcre $L(r) is the wave function obtained by numerically solving the radial part 
of the effective one-electron Schrodinger equation and ( ) refers to averaging over 
the angular variables. The mufin-tin potential is obtained from the charge density 
during the self-consistency process by solving Poisson's equation V2v(r) = 4?rp(r). 
We have used the Hedin and Lundqvist (1971) form for estimating the exchange- 
correlation e n e r a  in the local density approximation, and the Madelung repulsive 
term is obtained by the Ewald summation method (Fuchs (1935)) with the Ewald 
constant (for the FCC lattice) taken to be 0.131 eV 
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3. Results and discussion 

In figure 1 we show the cohesive energy of copper versus the lattice constant. The 
full squares show the actual calculated points which were then least-square fitted to 
an eight-degree polynomial. This was then used in the calculation of the pair po- 
tential. The minimum of the cohesive energy occurs at re = 2.67 8, which is in 
good agreement with the values 2.5 A quoted by Johnson (1989) and rr 2.6 8, 
quoted by Carlsson et al (1980). Our estimate of the cohesive energy at equilibrium 
is 3.49 eV This compares well with the self-consistent augmented-spherical-wave cal- 
culation (with Ewald correction), which gives a value of N 3.66 eV (see Esposito el 
a1 (1980)). The cohesive energy vanishes at ./re = 0.77 for the calculation reported 
by Carlsson el al (1980), while in our case this vanishes at ./re = 0.73. We seem to 
underestimate the cohesive energy in the small r/re regime for which more careful 
calculation in the TB-LMTO may be required. It may be noted that a more appropriate 
Hamiltonian would be the fully Liiwdin-orthogonalized LMTO Hamiltonian (Ander- 
sen et a1 (1985)) for such calculations. Also the errors due to the atomic sphere 
approximation (ASA) are generally small for close packed materials. However, for the 
calculation of pair potentials it would be more appropriate to include the combined 
corrections for a better estimate of energies for different T values. While we should 
aim for a very careful and accurate estimation of the cohesive energy, the main 
idea in this communication is to introduce and illustrate the Mobius transformation 
method as a computationally useful method for obtaining the pair potentials from 
first principles. The foregoing discussion is meant to justify our method of starting 
from a reasonable, first-principles calculation of the cohesive energy for copper. 

-2 :M 
4 

4 
1.5 2 25 3 3.5 

r (A) 
Flgure 1. The cohesive energy of copper versus the lallice conslanl. The full squares 
are the calculated values, and the full curve is the best4il function. 

In figure 2 we show our main results. The full curve shows the pair potential 
calculated from six terms in the series (7), while the dotted curve shows the estimate 
from the first term, Le. NE( r )  alone. The contribution from the remaining terms is 
also shown in the figure (dashed curve). Most of these contributions occur at small 



2446 A Mooke#ze et a1 

1.5 2 2.5 3 3.5 4 

r (A) 
Figure 2. The pair potential as a function of the distance between atoms. The dashed 
curve represents the term KE(r). The full curve is the converged CUNC after laking 
into account six terms in the series (7). The dotted curve shaws lhe correction 10 the 
lrnt term (dashed curve) coming from the rest of the lattice. 

values of r. This is a reflection of the fact that E ( r )  rapidly converges to zero for 
./re % 3. Inclusion of more terms in the series hardly changes the pair potentials and 
those curves will bc indistinguishable from the full curve to this degree of accuracy. 

1.5 2 2.5 3 3.5 4 

r (A) 

Figure 3. The pair potential as a function of r. The full c u m  shows our calculalion 
and the dashed curve the Monetype fitted potential reported by Johnson (1988). 

Figure 3 shows the pair potential from our calculation (full curve) along with the 
results of Johnson (1989) (dotted curve) obtained from the  embedded-atom method. 
It can be noted that while the potential has a form similar to the cohesive energy it 
is about an order of magnitude smaller. This should have been clear from the weight 
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of (1/6) in expression (11) for N. Furthermore, our pair potential has a minimum at 
2.89 8, This shift of the minimum of the pair potential as compared with that of the 
cohesive energy is very similar to the estimate of Carlsson et a1 (1980). Also, as with 
their case, the range of the pair potential is effectively about twice the equilibrium 
value of beyond which it falls exponentially to zero. Johnson (1989), obtained a 
Morse-type potential using the embedded-atom method and from fitting the cohesive 
energy, bulk modulus and vacancy formation energies. Though this curve is similar to 
our results, the minima of the two potentials are shifted. The agreement for the more 
interesting region of r > re is surprisingly very good whereas there are discrepancies 
in the r < re regime. We do not expect the pair potential of Johnson (1989) to be as 
good in this regime as for r > re. Also our calculatiens of the cohesive energy may 
require refinement as can be seen from figure 1 where the fit to the actual points is 
very good for r > re but not so good for r < re. 

In conclusion we have applied the method of Mobius transformation to the prob- 
lem of inversion of the cohesive energy to obtain an ab inilio pair potential for FCC 
metals and have tested it for copper. This method is fast, accurate and easily im- 
plemented on even a small personal computer. Once the difficult task of accurately 
evaluating the cohesive energy from first principles is over, the methodology described 
is ideally suited to obtain the pair potential and from it various measurable physical 
quantities. 
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